Designing casein-coated iron oxide nanostructures (CCIONPs) as superparamagnetic core–shell carriers for magnetic drug targeting
نویسندگان
چکیده
Magnetic drug targeting is a drug delivery system applicable to cancer treatment. Coated magnetic particles, called carriers, are very useful for delivering chemotherapeutic drugs. In the present research, casein-coated iron oxide nanocarriers (CCIONPs) of core shell nanostructure have been described as being applicable to magnetic drug targeting. The structure, morphology, and composition of prepared magnetic nanoparticles were determined by analytical techniques like Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Electron diffraction (ED), X-ray diffraction (XRD), Zeta potential, Dynamic light scattering (DLS), Mossbauer and Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Vibrating sample magnetometery (VSM)) and in vitro cytotoxicity analysis. Magnetization studies of CCIONPs conducted at room temperature using a vibrating sample magnetometer suggested their superparamagnetic nature as having a saturation magnetization (Ms) of 64 emu g-1 at an applied magnetic field of 5 kOe. The size of the magnetic polymeric nanoparticles was found to lie in the range of 73.9 ±0.36 nm, and the particles exhibited superparamagnetic behavior. The prepared particles could be used as a drug carrier for controlled and targeted drug delivery.
منابع مشابه
Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles
Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...
متن کاملCore-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملMagnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors
Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...
متن کاملMagnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release.
The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots em...
متن کاملSuperparamagnetic Iron oxide-Gold Core-Shell Nanoparticles for Biomedical Applications
Iron oxide nanoparticles are used for contrast enhancement in magnetic resonance imaging (MRI). We have prepared gold-coated iron oxide nanoparticles that show no change in their superparamagnetic behavior as a consequence of coating. Their potential use as MRI contrast agents was investigated by monitoring their T2 relaxation time with concentration. Cytotoxicity of these nanoparticles was als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015